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CHAPTER 2 Classical Statistical Inference
and Uneertainty

Before the biological survey can be designed and
linked to statistical methods of interpretation, an
exact formulation of the problem is needed to narrow
the scope of the study and focus investigators on col-
lecting the data. The choice of biological and chemi-
cal variables should be made early in the process, and
the survey design built around that selection. Fancy
statistics and survey designs may be appropriate, but
biologically defined objectives should dominate and
use the statistics, not the reverse (Green, 1979).

Formulating the Problem
Statement

A clear statement of the objective or problem is the
necessary basis on which the biological survey is de-
signed. A general question such as “does the effluent
from the municipal treatment plant damage the envi-
ronment?” does little to help decision makers. Con-
sider, however, their response to a more specific
statement: “Is the mean abundance of
young-of-the-year green sunfish caught in seines
above the discharge point greater (with an error rate of
5 percent) than those similarly trapped downstream
of the discharge point?” The precise nature of this
question makes it a clear guide for the collection and
interpretation of data.

The problem statement should minimally in-
clude the biological variables that indicate environ-
mental damage, a reference to the comparisons used
todetermine the impact, and a reference to the level of
precision (or uncertainty) that the investigator needs
to be confident that an impact has been determined.
In the preceding example, green sunfish are the bio-
logical indicator of impact, upstream and down-
stream seine data are the basis of comparison, and an
error rate of 5 percent provides an acceptable level of
uncertainty.

The problem statement, the survey design, and
the statistical methods used to interpret the data are
closely linked. Here, the survey design is an up-
stream/downstream set of samples with the upstream
data providing a reference for comparison. A t test or
rank sign test may be used to test for mean differences
between the sites.

From a statistical standpoint, the biological vari-
ables (measures) used to show damage should have
low natural variability and respond sharply to an im-

pact relative to any sampling variability. Natural vari-
ability contributes to the uncertainty associated with
their response to an impact. Lower natural variability
permits reliable inferences with smaller sample sizes.

Examining historical data is an excellent means
of selecting biological criteria that are sensitive to en-
vironmental impacts. Species that exhibit large natu-
ral spatial and temporal variations may be suitable
indicators of environmental change only in small
time scales or localized areas. If so, the use of such
variables will limit the investigator’s ability to assess
environmental change in long-term monitoring pro-
grams. Historical data, combined with good scientific
judgment, can be used to select biological criteria that
exhibit minimal natural variability within the context
of the site under evaluation.

Basie Statisties and Statistical
Concepts '

When a data set is quite small, the entire set can be re-
ported. However, for larger data sets, the most effec-
tive learning takes place when investigators
summarize the data in a few well-chosen statistics.
The choice to trade some of the information available
in the entire set for the convenience of a few descrip-
tive statistics is usually a good one, provided that the
descriptive statistics are carefully selected and cor-
rectly represent the original data. ‘

Some descriptive statistics are so commonly
used that we forget that they are but one option among
many candidate statistics. For example, the mean and
the standard deviation (or variance) are statistics used
to estimate the center of a data set and the spread on
those data. The scientist who uses these statistics has
already decided that they are the best choices to de-
scribe the data. They work very well, for example, as
representatives of symmetrically distributed data that
follow an approximately normal distribution. Thus,
their use in such circumstances is entirely justified.
However, in other situations involving biological
data, alternative descriptive statistics may be pre-
ferred.

Descriptive Statistics

Before selecting a descriptive statistic, the scientist
must understand the purpose of the statistic. Descrip-
tive statistics are often used in biological studies be-
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CHAPTER 2. Classical Statistical Inference and Uncertainty

cause the convenience of a few summary numbers
outweighs the loss of information that results from
not using the entire data set. Nevertheless, as much
information as possible must be summarized in the
descriptive statistics because the alternative may in-
volve a misrepresentation of the original data.

The basic statistics and statistical techniques
used in this chapter are further defined, described,
and illustrated in the appendix to this document (Ap-
pendix A). Readers unfamiliar with descriptive statis-
tics and graphic techniques should read Appendix A
now and use it hereafter as a reference. Other readers
may proceed directly to the tables in this chapter,
which summarize the advantages and disadvantages
of the statistical estimators and techniques described
in the appendix.

The common measures of the center, or central
tendency, of a data set are the mean, median, mode,
geometric mean, and trimmed mean. None of these
options is the best choice in all situations (see Table
2.1), yet each conveys useful information. The points
raised in Table 2.1 are not comprehensive or absolute;
they do, however, reflect the author’s experience with
these estimators.

Environmental contaminant concentration data
are strictly positive, and sample data sets exhibit
asymmetry {i.e., a few relatively high observations).
Therefore, a transformation, in particular, the loga-
rithmic transformation, should be applied to concen-

tration and other data that exhibit these characteris-
tics before analysis. When a transformation is used,
data analysis and estimation occur within the trans-
formed metric; if appropriate, the results may be con-
verted back to the original metric for presentation.

A measure of dispersion — spread or variability
— is another commonly reported descriptive statistic.
Common estimators for dispersion are standard devi-
ation, absolute deviation, interquartile range, and
range. These estimators are defined, described, and il-
lustrated with examples in the appendix; Table 2.2
summarizes when and how they may be used.

Table 2.3 summarizes four of the most useful
univariate and bivariate graphic techniques, includ-
ing histograms, stem and leaf displays, box and whis-
ker plots, and bivariate plots. These methods are also
illustrated in Appendix A.

Recommendations

There is no rigorous theoretical or empirical support
for using the normal distribution as a population
model for chemical and biological measures of water
quality or as a model for errors. Instead, the evidence
supports using the lognormal model. However, uncer-
tainty about the correctness of the lognormal model
suggests that prudent investigators will recommend
estimators that perform well even if an assumed
model is wrong.

Table 2.1—Measures of central tendency.

Easy to determine

mean under normality

observed value is
required

o Data are discrete or
can be discretized

SHOULD CONSIDER SHOULD NOT
ESTIMATOR ADVANTAGES DISADVANTAGES FOR USE WHEN USE WHEN
Mean o Most widely known |e Not resistant to e Sample mean is ¢ Outliers may occur
and used choice outliers required ¢ Distribution is not
¢ Easy to explain e Not as efficient! as | Distribution is symmetric
some alternatives known to be normal
under deviations from |e Distribution is
normality symmetric
Median ¢ Easy to explain o Not as efficient as the| ¢ Sample median is
e Easy to determine mean under normality |required
¢ Resistant to others ¢ Qutliers may occur
Mode ¢ Easy to explain s Not as efficient as the| e Most frequently ¢ More efficient

options are appropriate

Geometric Mean

e Appropriate for
certain skewed
(lognormal)
distribution

¢ Not as easy to
explain as first three

o Distribution appears
lognormal

¢ More widely known
estimators are
appropriate

Trimmed Mean

¢ Resistant to outliers

¢ Not as easy to
explain as first three

¢ Outliers may occur
and estimator
efficiency is desired

! Higher efficiency means lower standard error.
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CHAPTER 2. Classical Statistical Inference and Uncertainty

Table 2.2—Measures of dispersion.

SHOULD CONSIDER SHOULD NOT
ESTIMATOR ADVANTAGES DISADVANTAGES FOR USE WHEN USE WHEN
Standard o Most widely known |e Strongly influenced |e Sample standard ¢ Qutliers may occur
Deviation s Routinely calculated | by outliers deviation is required ¢ Sample histogram is
by statistics packages | e Not as efficient! as | e Distribution is even slightly more
‘ some alternatives known to be normal dispersed than is a
under even slight normal distribution
deviations from
normality
Median Absolute | e Resistant to outliers |e Not as efficient as the| ¢ Qutliers may occur
Deviation standard deviation
under normality
Interquartile ¢ Resistant to outliers | e Not as efficient as the| e Outliers may occur
Range ¢ Relatively easy to standard deviation
determine under normality
Range e Fasy to determine * Not as efficient » Range is required ¢ Any of the above
options is appropriate

1 Higher efficiency means lower standard error.

Table 2.3—Useful graphic techniques.

quartiles, and median)

TECHNIQUE FEATURES USEFUL FOR
Histogram ¢ Bar chart for data on a single (univariate) | ¢ Visual identification of distribution
variable shape, symmetry, center, dispersion, and
e Shows shape of empirical distribution outliers ’
Stem and Leaf Display ¢ Same as histogram ¢ Same as histogram
¢ Presents numeric values in display
Box and Whisker Plot » Display of order statistics (extremes, e Visual identification of distribution

* May be used to graph the same
characteristic (e.g., variable) for several
samples (e.g., different sampling sites)

shape, symmetry, center, dispersion, and
outliers (single sample)

o Comparison of several samples for
symmetry, center, and dispersion

Bivariate Plot
versus variable y)

¢ Scatter plot of data points (variable x

¢ Visual assessement of the strength of a
linear relationship between two variables
¢ Evidence of patterns, nonlinearity and

bivariate outliers

Many books and articles have been written re-
cently concerning the theoretical and empirical evi-
dence in favor of nonparametric methods and robust
and resistant estimators. Books that consider alterna-
tive estimators of center and dispersion (e.g., Huber,
1981; Hampel et al. 1986; Rey, 1983; Barnett and
Lewis, 1984; Miller, 1986; Staudte and Sheather,
1990) build a strong case for more robust estimators
than the mean and variance. Indeed, there is good evi-
dence (Tukey, 1960; Andrews et al. 1972) that the
‘mean and variance may be the worst choices among
" the common estimators for error-contaminated data.
Several articles that involve comparisons of estima-
tors on real data (e.g., Stigler, 1977; Rocke et al. 1982;

Hill and Dixon, 1982) also favor robust estimators
over conventional alternatives.

As a consequence, the median and the trimmed
mean are recommended for the routine calculation of
a data set’s central tendency. The interquartile range
and the median absolute deviation are recommended
for calculation of the dispersion. These suggestions
represent a compromise between robustness, ease of
explanation, and calculation simplicity. For the
trimmed mean, recommended amounts of trimming
range from 10 percent (Stigler, 1977) to over 20 per-
cent (e.g., Rocke et al. 1982). A critical argument in
support of the trimmed mean is that interval estima-
tion and hypothesis testing are still possible using the
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CHAPTER 2. Classical Statistical Inference and Uncertainty

t statistic (Tukey and McLaughlin, 1963; Dixon and
Tukey, 1968; Gilbert, 1987).

Uncertainty

In statistics, uncertainty is a measure of confidence.
That is, uncertainty provides a measure of precision
— it assigns the value of scientific information in eco-
logical studies. Scientific uncertainty is present in all
studies concerning biological criteria, but uncer-
tainty does not prevent management and decision
making. Rather, uncertainty provides a basis for se-
lecting among alternative actions and for deciding
whether additional information is needed (and if so,
what experimentation or observation should take
place).

In ecological studies, scientific uncertainty re-
sults from inadequate scientific knowledge, natural
variability, measurement error, and sampling error
.(e.g., the standard error of an estimator). In the actual
analysis, uncertainty arises from erroneous specifica-
tion of a model or from errors in statistics, parameters,
initial conditions, inputs for the model, or expert
judgment.

In some situations, uncertainty in an unknown
quantity (e.g., a model parameter or a biological end-
point) may be estimated using a measure of variabil-
ity. Likewise, in some situations, model error may be
estimated using a measure of goodness-of-fit (predic-
tions versus observations) of the model. In many situ-
ations, a judicious estimate of uncertainty is the only
option; in these cases, careful estimation is an accept-
able alternative and methods exist to elicit these judg-
ments from experts (Morgan and Henrion, 1990).

In many studies, uncertainty is present in more
than one component (e.g., parameters and models), so
the investigator must estimate the combined effects of
the uncertainties on the endpoint. This exercise,
called error propagation, is usually undertaken with
Monte Carlo simulation or first-order error analysis.

The outcome of an uncertainty analysis is a prob-
ability distribution that reflects uncertainty on the
endpoint: However, uncertainty analysis may not al-
ways be the most useful expression of risk. Other ex-
pressions of uncertainty, such as prediction,
confidence intervals, or odds ratios are easier to un-
derstand and interpret. If important error terms are ig-
nored when a probability statement is made, the
investigator must report this omission. Otherwise,
the probability statement is not representative, and
the uncertainties are underestimated.

Since uncertainty provides a measure of preci-
sion or value, it can be used by decision makers to
guide management actions. For example, in some
cases the uncertainty in a biological impact may be
too large to justify management changes. As a conse-

quence, managers may defer action until additional
monitoring data can be gathered rather than require
pollutant discharge controls. If the uncertainty is
large and the estimated costs of additional pollutant
controls quite high, it may be wise either to defer ac-
tion or to look for smaller, relatively less expensive
abatement strategies for an interim period while the
monitoring program continues.

Though environmental planners at national,
state, and local levels have rarely considered uncer-
tainty in their planning efforts, their work has been
generally successful over the past 20 years. It is, how-
ever, certainly possible that more effective manage-
ment — that is, less costly, more beneficial
management — might have occurred if uncertainty
had been explicitly considered.

If overall uncertainty is ignored, the illusion pre-
vails that scientific information is more precise than it
actually is. As a consequence, we are surprised and
disappointed when biological outcomes are substan-
tially different from predictions. Moreover, if we don’t
calculate uncertainty, we have no rational basis for
specifying the magnitude of our sampling program or
the resources (money, time, personnel) that should be
allocated to planning. Thus, decisions on planning
and analysis are more likely based on convention and
whim than on the logical objective of reducing scien-
tific uncertainty.

Statistical analysis is largely concerned with un-
certainty and variability. Therefore, uncertainty is an
important concept in this guidance manual. The anal-
yses presented here and in subsequent chapters are
based on particular measures of uncertainty, for ex-
ample, confidence intervals. These measures are “sta-
tistics”; they reflect data, and are not always
considered in the broader context of uncertainty —
that is, as establishing the uncertainty in a quantity of
interest. We will, however, consider these statistics in
the broader sense, with concern for the theoretical is-
sues raised in this section. Particularly given the
small samples that often occur with biocriteria assess-
ments, investigators should ask the following ques-
tions:

Do the data adequately represent
uncertainty?

Are all important sources of uncertainty
represented in the data?

Should expert scientific judgment be used to
augment or correct measures of uncertainty?

If components of uncertainty are ignored
because they are not included in the data,
are conclusions or decisions affected?

6 Biological Criteria: Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data



CHAPTER 2. Classical Statistical Inference and Uncertainty

Statistical analysis is not a rote exercise devoid
of judgment.

Statistical lnférence

Statistical inference is gained by two primary ap-
proaches: {1) interval estimation, and (2) hypothesis
testing. Interval estimation concerns the calculation
of a confidence interval or prediction interval that
bounds the range of likely values for a quantity of in-
terest. The end product is typically the estimated
quantity (e.g., a mean value) plus or minus the upper
and lower interval. The same information is used in
hypothesis testing; however, in hypothesis testing,
the end productis a decision concerning the truth of a
candidate hypothesis about the magnitude of the
quantity of interest.

In a particular problem, the choice between us-
ing interval estimation or hypothesis testing generally
depends on the question or issue at hand. For exam-
ple, if a summary of scientific evidence is requested,
confidence intervals are apt to be favored; however, if
a choice or decision is to be made, hypothesis tests are
likely to be preferred.

Interval Estimation

Statistical intervals, whether confidence or predic-
tion, may be based on an assumed probability model
describing the statistic of interest, or they may require
no assumption of a particular underlying probability
model.

Hahn and Meeker (1991) note that the proper
choice of statistical interval depends on the problem
or issue of concern. As a rule, if the interval is in-
tended to bound a population parameter (e.g., the true
mean), then the appropriate choice is the confidence
interval. If, however, the interval is to bound a future
member of the population (e.g., a forecasted value),
then the appropriate choice is the prediction interval.
Another statistical interval less frequently used in
ecology is the tolerance interval, which bounds a
specified proportion of observations.

In conventional (classical, or frequentist) statis-
tical inference, the statistical interval has a particular
interpretation that is often incorrectly stated in scien-
tific studies. For example, if a 95 percent statistical in-
terval for the mean is 7 + 2, it is not correct to say that
there is a 95 percent chance that the true mean lies be-
tween 5 and 9." Rather, it is correct to say that 95 per-
cent of the time this interval is calculated, the true
mean will lie within the computed interval. Although
it sounds awkward and not directly relevant to the is-
sue at hand, this interpretation is the correct meaning
of a classical statistical interval. In truth, once it is cal-
culated, the interval either does or does not contain

the true value. In classical statistics, the inference
from interval estimation refers to the procedure for in-
terval calculation, not to the particular interval that is
calculated.

Hypotbesis Testing

Biosurveys are used for many purposes, one of which
is to assess impact or effect. Resource managers may
want to assess, for example, the influence of a pollut-
ant discharge or land use change on a particular area.
The effect of the impact can be determined based on
the study of trends over time or by comparing up-
stream and downstream conditions. In some in-
stances, the interest is in magnitude of effect, but
concern often focuses simply on the presence or ab-
sence of an effect of a specific magnitude. In such
cases, hypothesis testing is usually the statistical pro-
cedure of choice.

In conventional statistical analysis, hypothesis
testing for a trend or effect is often based on a point
null hypothesis. Typically, the point null hypothesis
is that no trend or effect exists. The position is pre-
sented as a “straw man” (Wonnacott and Wonnacott,
1977) that the scientist expects to reject on the basis of
evidence. To test this hypothesis, the investigator col-

Table 2.4—Possible outcomes from hypothesis testing.

THE WORLD ACCEPT H, REJECT H,
H, is True Correct decision. Type I error. )
Probability =1 - a; | Probability = a;
corresponds to the | also called the
confidence level. significance level.
Hy is Fale Type II error. Correct decision.
(H, is True) Probability = Probablity = 1 - B;
also called power.

lects data to provide a sample estimate of the effect
(e.g., change in biotic integrity at a single site over
time). The data are used to provide a sample estimate
of atest statistic, and a table for the test statistic is con-
sulted to estimate how unusual the observed value of
the test statistic is if the null hypothesis is true. If the
observed value of the test statistic is unusual, the null
hypothesis is rejected.

In a typical application of parametric hypothesis
testing, a hypothesis, H,, called the null hypothesis, is
proposed and then evaluated using a standard statis-
tical procedure like the t test. Competing with this
null hypothesis for acceptance is the alternative hy-
pothesis, H,. Under this simple scheme, there are four
possible outcomes of the testing procedure: the hy-

Biological Criteria: Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data 7
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pothesis is either true or false, and the test results can
be accepted or rejected for each hypothesis (see Table
2.4).

The point null hypothesis is a precise hypothesis
that may be symbolically expressed:

Hy: 6, -0,=0

H:0,-6,#0
where 0 is a parameter of interest. An example of a
point null hypothesis in words is, “no change occurs

in mean IBI after the new wastewater treatment plant
goes on line.” Symbolically, it is expressed as

Hy: gy =0

Hi:pg-piy #0
where 1, is the “before” true mean and 1, is the “dfter”
true mean. The test of the null hypothesis proceeds
with the calculation of the sample means, %, and .
In most cases, the sample means will differ as a con-
sequence of natural variability or measurement error
or both, so a decision must be made concerning how
large this difference must be before it is considered
too large to result from variability or error. In classical
statistics, this decision is often based on standard
practice (e.g., a Type I error of 0.05 is acceptable), or
on informal consideration of the consequences of an
incorrect conclusion.

The result of a hypothesis test can be a conclu-
sion or a decision concerning the rejected hypothesis.
Alternatively, the result can be expressed as a
“p-value,” which quantifies the strength of the data
evidence in favor of the null hypothesis. The p-value
is defined as the probability that “the sample value
would be as large as the value actually observed, if H,
is true” (Wonnacott and Wonnacott, 1977). In effect,
the p-value provides a measure of how likely a partic-
ular value is, assuming that the null hypothesis is
true. Thus, the smaller the p-value, the less likely that
the sample supports H,,. This is useful information; it
suggests that p-values should always be reported to
allow the reader to decide the strength of the evi-
dence.

Common Assumptions

Virtually ‘all statistical procedures and tests require
the validity of one or more assumptions. These as-
sumptions concern either the underlying population
being sampled or the distribution for a test statistic.
Since the failure of an assumption can have a substan-
tial effect on a statistical test, the common assump-
tions of normality, equality of variances, and
independence are discussed in this section. We must
ask, for example, to what extent can an assumption be
violated without serious consequences? Or how
should assumption violations be addressed?

u Normality. A common assumption of many para-
metric statistical tests is that samples are drawn from
a normal distribution. Alternatively, it may be as-
sumed that the statistic of interest (e.g., a mean) is de-
scribed by a normal sampling distribution. In either
case, the key distinction between parametric and
nonparametric (or distribution-free) statistical tests is
that a probability model (often normal) is assumed.

Empirical evidence (e.g., Box et al. 1978) indi-
cates that the significance level but not the power is
robust or not greatly affected by mild violations of the
normality assumption for statistical tests concerned
with the mean. This finding suggests that a test result
indicating “statistical significance” is reliable, but a
“nonsignificant” result may be the result of a lack of
robustness to nonnormality. The normality of a sam-
ple can be checked using a normal probability plot,
chi square test, Kolmogorov-Smirnov test, or by test-
ing for skewness or kurtosis; however, many biologi-
cal surveys are not designed to produce enough
samples to make these tests definitive.

Normality of the sampling distribution for a test
statistic is important because it provides a probability
model for interval estimation and hypothesis tests. In
some cases, transformation of the data may help the
investigator achieve approximate normality (or sym-
metry) in a sample, if normality is required. Since
nonnegative concentration data cannot be truly nor-
mal, and since empirical evidence suggests that envi-
ronmental contaminant data may be described with a
lognormal distribution, the logarithmic transforma-
tion is a good first choice. Therefore, in the absence of
contrary evidence, we recommend that concentration
data be log-transformed prior to analysis.

B Equality of Variance. A second common as-
sumption is that when two or more distributions are
involved in a test, the variances will be constant
across distributions. Many tests are also robust to
mild violations of this assumption, particularly if the
sample sizes are nearly identical. To test this assump-
tion, a ¢ test (usually a two-tailed one) can be per-
formed; see Snedecor and Cochran (1967) for an
example, and Miller (1986) for interpretive results.
Conover (1980) provides an alternative, namely,
nonparametric tests of equality of variances. Note
that if two means are being compared based on sam-
ples with vastly different variances, the differences of
interest may be more fundamental than the difference
between the means.

B Independence. The assumption of greatest gen-
eral concern is independence. Most statistical tests
(parametric and nonparametric) require a random
sample, or a sample composed of independent obser-
vations. Dependency between or among observations

8 Biological Criteria: Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data
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in a data set means that each observation contains
some information already conveyed in other observa-
tions. Thus, there is less new independent informa-
tion in a dependent data set than in an independent
data set of the same sample size. Because statistical
procedures are often not robust to violation of the in-
dependence assumption, adjustments are generally
recommended to address anticipated problems.

Dependence in a sample can result from spatial
or temporal patterns, that is, from persistence
through time and space. In most types of analyses, the
assumption of independence refers to independence
in the disturbances (errors). For example, in a time se-
ries with temporal trend and seasonal pattern, de-
pendence or autocorrelation in the raw data series
may exist because of a deterministic feature of the
data (e.g., the time trend or seasonal pattern).

This type of autocorrelation poses no difficulty;
it is addressed by modeling the deterministic features
of the data and subtracting the modeled component
from the original series. Of particular concern in test-
ing for trend is autocorrelation that remains after all
deterministic features are removed (i.e., errors that
are in the disturbances). When this situation arises,
an adjustment to the trend test is necessary. Reckhow
et al. (1993) provide guidance and software.

A similar situation can occur in the estimation of
a regression slope or a central tendency statistic such
as the mean or trimmed mean. In such cases, the inde-
pendence assumption refers to the errors, as esti-
mated by the residuals, around the regression line or
the mean. If persistence or dependence is found in the
residuals, then the independence assumption is vio-
lated and corrective action is needed. Options to ad-
dress this problem include using an effective sample
size (Reckhow and Chapra, 1983), or generalized,
least squares for regression (see Kmenta [1986] or any
standard econometrics regression text).

If the investigator finds positive autocorrelation
in the disturbances (i.e., if each disturbance is posi-
tively correlated with nearby disturbances in the se-
ries), confidence interval estimates will be too narrow
and may lead to rejection of the null hypothesis.
Autocorrelation in the disturbances is the most com-
mon and potentially the most troublesome of the
causes of assumption violations.

The degree of autocorrelation is a function of the
frequency of sampling; that is, a data set based on an
irregular sampling frequency cannot be characterized
by a single, fixed value for autocorrelation. For biolog-
ical time series, stream data obtained more frequently
than monthly may be expected to be autocorrelated
(after trends and seasonal cycles are removed).
Stream survey data based on less frequent sampling

are less likely to exhibit sample autocorrelation esti-
mates of significance.

Parametric Methods — the t Test

Parametric approaches involve a model (e.g., regres-
sion slope) for any deterministic features and a proba-
bility model for the errors. In some cases, the
deterministic model will be a linear, curvilinear, or
step function, while the model for the errors is typi-
cally a normal probability distribution with inde-
pendent, identically distributed errors. In other cases,
the deterministic model may simply be a constant (as
it is when interest focuses on an “upstream/down-
stream” comparison between two sites), though the
probability model may in all cases be a normal proba-
bility distribution. The ¢ test is a typical parametric
test.

Using the ¢ test
A Student’s t statistic:

t_ X— l | (2.1a)

s//m
has a Student’s t distribution (n-1 degrees of freedom};
here, “x” is the mean of a random sample from a nor-
mal distribution with true mean x and constant vari-

ance, s is the sample standard deviation, and n is the
sample size. In addition, for two samples:

il _XZ
t_
1

- S, +s 1 (2:1b)
2 7+—_—
2 nl n2

also has a Student’s t distribution (n, +n,-2 degrees of
freedom); here, x, and x, are the sample means; s, and
s, are the sample standard deviations; and n, and n,
are the sample sizes. This distribution is widely tabu-
lated, and it is commonly used in hypothesis testing
and confidence interval estimation for a sample mean
(one-sample test; Equation 2.1a) or a comparison of
sample means (two-sample test; Equation 2.1b).

When Student’s t distribution is used in a hy-
pothesis test (a ¢ test), it is assumed that samples are
drawn from a normal distribution, the variances are
constant across distributions, and the observations
are independent. Of these assumptions, Box et al.

(1978) have shown that the  test has limited robust-
ness to violations of the first two (normality and
equality of variances); however, problems will oc-
cur if the observations are dependent. The scientist
should probably be concerned about the first two as-
sumptions only in situations in which the two data
sets have substantially different variances and sub-
stantially different sample sizes (see Snedecor and

Biological Criteria: Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data 9



CHAPTER 2. Classical Statistical Inference and Uncertainty

Cochran [1967] for F test calculations to compare
variances).

An attractive variation of the ¢ statistic for use in
situations where outliers are of concern was proposed
by Yuen and Dixon (1973; see also Miller, 1986; and
Staudte and Sheather, 1990). They created an out-
lier-resistant, or robust, version of the t statistic
(Equations 2.1aand 2.1b) using a trimmed mean and a
Winsorized standard deviation. For example, if a t sta-
tistic is used to compare the means of two popula-
tions, the robust (trimmed t) version is

¢ = Rt “X i (2.2)
[
1 1
S w __;+ [
nl nZ
where X, = trimmed mean for sample i
S, = Winsorized standard deviation
n = number of observations in sample i

A Winsorized statistic is similar to a trimmed sta-
tistic. For trimming, observations are ordered from
lowest to highest, and the k-lowest and k-highest are
removed from the sample for the calculation of the
k-trimmed statistic (e.g., trimmed mean). For
k-Winsorizing, observations are ordered from lowest
to highest, and the k-lowest and k-highest are not re-
moved, but are reassigned the values of the lowest ob-
servation and the highest observation remaining in
the trimmed sample. The following example illus-
trates this.

A sample of 10 IBI values is obtained for analysis:
9, 31, 26, 25, 34, 38, 33, 31, 28, 37

And ordered from lowest to highest:
25, 26, 28, 29, 31, 31, 33, 34, 37, 38.

The 10 percent-trimmed sample is
26, 28, 29, 31, 31, 33, 34, 37

The 10 percent-Winsorized sample is
26, 26, 28, 29, 31, 31, 33, 34, 37, 37

If we were to calculate the 10 percent-trimmed ¢
statistic in Equation 2.2 for this IBI sample, we would
use: (1) the trimmed sample (eight observations) to
calculate a mean, and (2) the Winsorized sample (10
observations) to calculate a standard deviation. For
the two-sample comparison of means, the trimmed ¢
statistic has (1-2k)(n, +n,)-2 degrees of freedom or, in
the above example, 7 degrees of freedom (df). The
trimmed ¢ statistic is an attractive option that should
be considered whenever outliers are a concern.

The parametric approach is appropriate and ad-
vantageous if the deterministic model is a reasonable
characterization of reality and if the model for errors

holds. In such cases, parametric tests should be more
powerful than nonparametric or distribution-free al-
ternatives. Thus, the assumption that deterministic
and probability models are correct is the basis on
which the superior performance of parametric meth-
ods rests. If the assumptions concerning these models
are incorrect, then the results of the parametric tests
may be invalid and distribution-free procedures may
be more appropriate.

Nonparametric Tests — the W test

Distribution-free methods, as the name suggests, do
not require an assumption concerning the particular
form of the underlying probability model for the data
generation process. An assumption of independence
is, however, usually made; therefore, autocorrelation
can be as serious a problem in nonparametric meth-
ods as it is for parametric and robust methods. Distri-
bution-free tests are often based on rank (or order); the
sample observations are arranged from lowest to
highest. The Wilcoxon-Mann-Whitney test or Wtest is
a typical distribution-free test.

Using the W test

The W test is a two-sample hypothesis test, designed
to test the hypothesis that two random samples are
drawn from identical continuous distributions with
the same center (alternative hypothesis: one distribu-
tion is offset from the other, but otherwise identical).
This test is often presented as an option to the
two-sample t test that should be considered if the as-
sumption of normality is believed to be seriously in
error. The W test has its own statistic, which is tabu-
lated in most elementary statistics textbooks (i.e.,
those with a chapter on nonparametric methods).
However, for moderate to large sample sizes (e.g., n >
15), the statistic is approximately normal under the
null hypothesis, so the standard normal table can be
used.

The scientist should consider the W test for any
situation in which the two-sample £ test may be used.
Comparative studies of these two tests indicate that
while the t test is robust to violations of the normality
assumption, the W test is relatively powerful while
not requiring normality. Situations that appear se-
verely nonnormal might favor the W test; otherwise
the t test may be selected. Some statisticians (e.g.,
Blalock, 1972) recommend that both tests be con-
ducted as a double check on the hypothesis.

Unfortunately, violation of the independence as-
sumption appears to be as serious for the W test as for
the t test. If these tests are to be meaningful, the scien-
tist must confirm independence or make other adjust-
ments as noted in Reckhow et al. (1993).
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In essence, the W test is used to determine if the
two distributions under study have the same central
tendency, or if one distribution is offset from the
other. To conduct the W test, the data points from the
samples are combined, while maintaining the sepa-
rate sample identity. This overall data set is ordered
from low value to high value, and ranks are assigned
according to this ordering.

To test the null hypothesis of no difference be-
tween the two distributions (f [x] and g[x])

Hy: flx) = g(x)

the ranks, R, for the data points in one of the two
samples are summed:

W=YR; (2.3)

The ranks should be specified as follows
(Wonnacott and Wonnacott, 1977): Start ordering
(low to high, or high to low) from the end (high or low)
at which the observations from the smaller sample
tend to be greater in number, and sum the ranks to es-
timate W from this smaller sample. This estimate
keeps W small as it is reported in most tables. For ei-
ther one-sided or two-sided tests, if ties occur in the
ranks, then all tied observations should be assigned
the same average rank.

Statistical significance is a function of the degree
to which, under the null hypothesis, the ranks occu-
pied by either data set differ from the ranks expected
as aresult of random variation. For small samples, the
W statistic calculated in Equation 2.3 can be com-
pared to tabulated values to determine its signifi-
cance (see Hollander and Wolfe, 1973). For moderate
to large samples (where total nn from both samples >
15), Wis approximately normal (if the null hypothesis
is true). Therefore, the W statistic may be evaluated
using a standard normal table with mean (E[W]) and
variance (Var[W]):

E[W) =1y (HB + ny + 1)/2 [2.4)
Var(W) = ngng(ng + ny + 1)/12 {2.5a)

If there are ties in the data, then the variance may
be calculated as
i A GES)
=1

(nA +ng )(nA +ng _1)

n,ng

Var(W) = n, +ng+1-

(2.5b)

where t, is the size (number of data points with
the same value) of tied groupj. The effect of ties is neg-
ligible unless there are several large groups (¢, > 3) in
the data set.

These statistics are used to create the standard
normal deviate:

__W-EW) (2.6)
(Var(W))*
where: * n,, ng =the number of observations in
samples A and B (ng< np).

Example — an IBI case study

IBI data have been obtained from upstream and
downstream sites surrounding a wastewater dis-
charge. Assume independence.

Upstream | 33 | 34 |25 |37 |39 | 45 | 49 | 47 | 45 | 44

Downstream | 26 | 30 | 18 [ 32| 36 | 36 | 43 | 42 | 41 | 41

(a) Test the null hypothesis that the true differ-
ence between the upstream and downstream IBI
means is zero, versus the alternative hypothesis that
the downstream IBI mean is lower than the upstream
IBI mean.

Ho: py—up =10
Hy:py=pp >0

First, some basic statistics for each sample:

SAMPLE MEAN SAMPLE STANDARD
DEVIATION
Upstream 39.8 7.57
Downstream 34.5 8.09

For a comparison of two means based on equal
sample sizes, the t statistic is

398-345

_x2 ]
(s +s2) f 1 757+809 fl 1 783«/ 02 35
n 10

At the 0.05 significance level, the one-tailed t sta-
tistic for 18 degrees of freedom is 1.73. Since 1.51 <
1.73, we cannot reject the null hypothesis (at the 0.05
level).

{b) Test the null hypothesis (see part a) using the
10 percent trimmed ¢ (10 percent trimmed from each
end).

__d05-355 50 ..
T 583+639 [1 612402

t. = Kt~ Rio
ToCwHw2) (11

2 \n'n, 2 V10710

Atthe 0.05 significance level, the one-tailed ¢ sta-
tistic for 14 degrees of freedom is 1.76. Since 1.83
1.76, we reject the null hypothesis (at the 0.05 level).

(c) Test the null hypothesis (see part a) using the
W test.

Biological Criteria: Technical Guidance for Survey Design and Statistical Evaluation of Biosurvey Data 11
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ORDER IBI VALUES

Upstream

49147 45|45 |44 39|37 3433 25

Downstream

4342|4141 36 | 36 32 (30|26

Upstream

Downstream 6718585

12.5(12.5 1617 |18

Here the separate samples have been combined
for the purpose of rank ordering. The W test statistic
can then be calculated from the ranks:

W=ZRU,, =1+2+354+3+5+10+11+14+15+19=84
E(W)=n,(n; +n,+1)/2=10(10+10+1)/ 2=105

Var(W)=(ngn, /12)[n, + n, + 1- {th 1)}/ (g + n,)n, + 0, —1)]

=[(10)10) / 12][10 + 10+ 1= {(2)3) + (DB) + (2)(3)}/ (10 + 10)(10 + 10— 1)] = 174.61

_(W-EW) 84-105__
E= War(WH= " 17460

At the 0.05 significance level, the one-tailed z
statisticis 1.65. Since 1.59 < 1.65, we cannot reject the
null hypothesis (at the 0.05 level.

A glance at the IBI values and ranks in this exam-
ple indicates a difference between the two samples
(box plots and histograms would provide further sup-
porting evidence). At issue is whether this difference
in the sample is a chance occurrence or an indication
of a true difference between the sites. If we adopt the
conventional 0.05 level for hypothesis testing, then
the conclusions from the three tests are ambiguous.
Still, we can say the following about both the site
comparisons and the methods:

(i) The downstream site is slightly impacted.
Even though only one of the three test results yielded
significance (at the 0.05 level), all three were close,
suggesting a slight difference between the sites.

(ii) For each site, the lowest IBI value (25 for up-
stream, and 18 for downstream) is influential, partic-
ularly on the standard deviation. As a consequence,
for the conventional ¢ test, the denominator in the ¢
statistic is inflated and rejection of the null hypothe-
sis is less likely. Note that the lowest IBI value for the
upstream site (IBI = 25) also affects the distribu-
tion-free W test. This IBI value holds a high rank (19)

.for the upstream sample, and substantially affects the

test result. If that single IBI value had been 27 instead
of 25, we would have rejected the null hypothesis at
the 0.05 level.

(iii) The trimmed ¢ is resistant to unusual obser-
vations or outliers, and thus provides the best single
indicator of difference between the sites as conveyed
by the bulk of the data from each site.

Conclusions

In hypothesis testing, the conclusion to not reject H,
(in effect, to accept H,) should not be evaluated
strictly on the basis of a, the probability of rejecting H,
when it is true (Type I error; see Table 2.4). Instead, we
must be concerned with B, the probability of accept-
ing H, when it is false (Type II error). Unfortunately,
does not have a single value, but is dependent on the
true (but unknown) value of the difference between
population means and on the sample size, n. For a par-
ticular testing procedure and sample size, we can de-
termine and plot a relationship between the true
difference between means and B. This plot is called
the operating characteristic curve.

To understand the issues concerning signifi-
cance and power (o and 1-B), consider the null hy-
pothesis in the IBI case study:

H,: The population mean IBI at the upstream site is
the same as the population mean IBI at the
downstream site.

In addition, because of the wastewater dis-
charge, consider the general alternative hypothesis:

H,: The population mean IBI at the upstream site is
higher than the population mean IBI at the
downstream site.

If we adopt o = 0.05 {the probability of rejecting
H, when it is true; Type I error) as our significance
level, then Figure 2.1a displays the sampling distribu-
tion for the mean under H, with 18 degrees of free-
dom. The horizontal axis in Figure 2.1 is the
“difference between the means”; thus, the sampling
distribution is centered at zero in Figure 2.1a (consis-
tent with zero difference between means under H,).
The 0.05-significant tail area (the “rejection region”)
begins at 6.06, which means that the sample differ-
ence must be greater than or equal to 6.06 for us to re-
ject H,,. Since the difference between the means in our
sample IBI was only 5.3, we are inclined to accept the
null hypothesis, based on the conventional ¢ test.

(Note: to find the beginning of the tail area multi-
ply the t statistic times the standard error. In this ex-
ample, the ¢ statistic is 1.73 [one-sided, 0.05 level, 18
degrees of freedom)], and the standard error is 3.5.
Thus, the tail area begins at [1.73][3.5] = 6.06.)

~ Now suppose that the following alternative hy-
pothesis, H,, is actually true for the sample IBI case:

H,;: The population mean IBI at the upstream site is
higher by 5.0 than the population mean IBI at
the downstream site. '

In addition suppose that while H, actually is
true, we propose a hypothesis test for Hy based on the
acceptance region in Figure 2.1a (i.e., accept H, if the
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(a) If Hp is true

o = .05 (5% tail area)

(b) If Hq is true

S

4 p=0.62
62% of area)

“

6.06

Figure 2.1a and b.—Sampling distributions under different hypotheses.

difference between the means is less than 6.06),
which is exactly what occurred in our example. As we
noted above, consideration of H,, alone (Figure 2.1a)
leads us to accept the null hypothesis.

Yet, with H, actually true (see Fig. 2.1b), if we
propose a hypothesis test for H;, based on the accep-
tance region in Figure 2.1a, there is a 62 percent
chance that we will accept Hy when it is actually false,
according to Figure 2.1b (given the sample size in the
example). This high likelihood of Type Il error (see Ta-
ble 2.4) underscores the danger of concluding the hy-
pothesis test with acceptance of the null hypothesis.
The power of this particular test is 1-p, or a 38 percent
chance of detecting an IBI change of 5. Note that the
specific alternative hypothesis H, is one example of
an unlimited number of possibilities associated with
the general alternative hypothesis H,. Associated
with H,; B = 0.62 is one point on the power curve for
this test and sample size. To properly determine the
power of a test, we need to calculate p for a range of
specific alternative hypotheses.

A second issue of concern in hypothesis testing
is the problem of multiple simultaneous hypothesis
testing, or “multiplicity” (Mosteller and Tukey, 1977).
The classical interpretation of the 0.05 significance
level (for o) associated with a hypothesis test is that

95 percent of the time this testing procedure is ap-
plied, the conclusion to accept the null hypothesis
will not be in error if the null hypothesis is true. That
is, on the average, one in 20 tests under these condi-
tions will result in Type I errors.

The problem of multiplicity arises when an in-
vestigator conducts several tests of a similar nature on
a set of data. If all but a few of the tests yield statisti-
cally insignificant results, the scientist should not ig-
nore this in favor of those that are significant. The
error of multiplicity results when one ignores the ma-
jority of the test results and cites only those that are
apparently statistically significant. As Mosteller and
Tukey (1977) note, the multiplicity error is techni-
cally the incorrect assignment of an a-level. When
multiple tests of a similar nature are run on a set of
data, a collective o should be used, associated with si-
multaneous test results. This tactic is typically re-
ferred to as the Bonferroni correction for correlation
analysis.

The following comments from Wonnacott and
Wonnacott (1972, pp. 201-202) summarize our atti-
tude toward hypothesis testing:

We conclude that although statistical theory
provides a rationale for rejecting H,, it pro-
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vides no formal rationale for accepting H,. The
null hypothesis may sometimes be uninterest-
ing, and one that we neither believe or wish to
establish; it is selected because of its simplic-
ity. In such cases, it is the alternative H, that
we are trying to establish, and we prove H, by
rejecting H,. We can see now why statistics is
sometimes called “the science of disproof.” H,
cannot be proved, and H, is proved by dis-
proving (rejecting) H,. It follows that if we
wish to prove some proposition, we will often
callit H, and set up the contrary hypothesis H,
as the “straw man” we hope to destroy. And of
course if H, is only such a straw man, then it
becomes absurd to accept it in the face of a
small sample result that really supports H,.

Since there are great dangers in accepting H,,
the decision instead should often be simply to
“not reject Hy,” i.e., reserve judgment. This
means that type Il error in its worse form may
be avoided; but it also means you may be leav-
ing the scene of the evidence with nothing in
hand. It is for this reason that either the con-
struction of a confidence interval or the calcu-
lation of a prob-value is preferred, since either
provides a summary of the information pro-
vided by the sample, useful to sharpen up
your knowledge of what the underlying popu-
lation is really like.

If, on the other hand, a simple accept-or-reject
hypothesis test is desired, then we must look
to a far more sophisticated technique. Spe-
cifically, we must explicitly take account not
only of the sample data used in any standard
hypothesis test (along with the adequacy of
the sample size), but also:

1. Prior belief. How much confidence do we
have in the engineering department that has
assured us that the new process is better? Is
their vote divided? Have they ever been wrong
before?

2. Loss involved in making a wrong decision. If
we make a type I error (i.e., decide to reject the
old process in favor of the new, even though
the old is as good), what will be the costs of re-
tooling, etc.?

These comments amount to an advocacy of
Bayesian decision theory. While it may be difficult to
interpret a biosurvey in decision analysis terms, prior
information and loss functions should, at a mini-
mum, be considered in an informal manner. It is good
engineering and planning practice to make use of all
relevant information in inference and decision mak-
ing.
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